

Mathematics Methods Unit 3,4 Test 2 2019

Section 1 Calculator Free Fundamental Theorem, The Exponential Function & Trigonometry

STUDENT'S NA				
DATE: Thursday	y 4 April	TIME:	30 minutes	MARKS: 32
INSTRUCTION Standard Items:		rawing templates, era	ser	
Questions or parts of	questions worth more	e than 2 marks require	working to be shown t	o receive full marks.
1. (3 marks) Given g when x	= π		mplified value for - 2e Sin	r the rate of change of g'(x)
	$g''(\pi) =$	2e 211 con 211	- 2e sin 8	uT .
	=	2e ²⁷⁷		

2. (9 marks)

(a)
$$\frac{d}{dx} \left(\frac{e^{-x}}{\sin x} \right) = -e^{-x} \frac{1}{\sin^2 x} = -e^{-x} \frac{1}{\sin^2 x}$$
 [2]

(b)
$$\int_{0}^{2} x e^{4-x^{2}} dx = -\frac{1}{2} \int_{0}^{2} -2\pi e^{4-x^{2}} dx$$

$$= -\frac{1}{2} \left[e^{4-x^{2}} \right]_{0}^{2}$$

$$= -\frac{1}{2} \left(e^{0} - e^{4} \right)$$

$$= -\frac{1}{2} \left(1 - e^{4} \right)$$

(c)
$$\frac{d}{dx} \int_{x}^{0} \sin(t) + e^{t} dt = -\frac{d}{dx} \int_{0}^{\infty} \sin t + e^{t} dt$$
 [2]
$$= -\sin x - e^{x}$$

(d)
$$\int 4\cos(3x) \ dx = \frac{4}{3} \cos 3x + C$$
 [2]

3. (4 marks)

Given $\int_{1}^{6} f(x) dx = 10$, determine

(a)
$$\int_{6}^{1} e^{2} f(x) dx = -e^{2} \int_{1}^{6} f(x) dx$$
 [2]
$$= -10e^{2}$$

(b)
$$\int_{1}^{3} (f(x) - 2) dx - \int_{6}^{3} f(x) dx$$

$$= \int_{1}^{3} f(x) dx - \int_{1}^{3} 2 dx + \int_{3}^{6} f(x) dx$$

$$= \int_{1}^{6} f(x) dx - \int_{1}^{3} 2 dx + \int_{3}^{6} f(x) dx$$

$$= \int_{1}^{6} f(x) dx - \int_{1}^{3} 2 dx + \int_{3}^{6} f(x) dx$$

$$= \int_{1}^{6} f(x) dx - \int_{1}^{3} 2 dx + \int_{3}^{6} f(x) dx$$

$$= \int_{1}^{6} f(x) dx - \int_{1}^{3} 2 dx + \int_{3}^{6} f(x) dx$$

$$= \int_{1}^{6} f(x) dx - \int_{1}^{3} 2 dx + \int_{3}^{6} f(x) dx$$

4. (5 marks)

Determine the exact area enclosed by $y = \cos x - \frac{1}{2}$ and the x-axis from 0 to 2π

$$conx - \frac{1}{2} = 0$$
 $st = \frac{11}{3}, \frac{st}{3}$

$$AREA = 2 \int_{0}^{\frac{\pi}{3}} \cos x - \frac{1}{2} dx + \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \cos x - \frac{1}{2} dx$$

$$= 2 \int_{0}^{\frac{\pi}{3}} \sin x - \frac{1}{2} \int_{0}$$

Consider the function: $f(x) = xe^x$.

(a) Determine the co-ordinates of any axis intercepts.

[1]

(b) Show that the function has only one stationary point.

[3]

$$f(x) = e^{x} + xe^{x}$$

$$e^{x} + xe^{x} = 0$$

$$e^{x}(1+x) = 0$$

$$e^{x} = 0 \qquad 1+x = 0$$

$$x = -1$$

-: ONLY ONE

(c) Determine the co-ordinates and nature of the stationary point.

[3]

$$f''(x) = 2e^{x} + xe^{2}$$

 $f''(-1) = 2e^{-1} - e^{-1} > 0$

-' MIN

 $(-2, -2e^{-2})$

(d) Determine the co-ordinates of the point of inflection.

[2]

(e) Determine
$$\int x e^x dx$$

[3]

$$f'(x) = e^{x} + xe^{x}$$

$$\int f'(x) dx = \int e^{x} dx + \int xe^{x} dx$$

$$f(x) = e^{x} + \int xe^{x} dx$$

$$f(x) = e^{x} + \int xe^{x} dx$$

$$f(x) = e^{x} + \int xe^{x} dx$$

Page 5 of 5

Mathematics Methods Unit 3,4 Test 1 2019

Section 2 Calculator Assumed
Fundamental Theorem, The Exponential Function & Trigonometry

ST	TID	EN	T'S	NA	ME

DATE: Thursday 4 April

TIME: 20 minutes

MARKS: 22

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Special Items:

Three calculators, notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

6. (5 marks)

A radioactive material decays such that it has a half-life of 25 years, meaning it takes twenty-five years for the amount of material to be halved.

State a formula for the mass m(t) remaining after t years where the initial amount is 8000 kg. (Give your answer in the form: $M = M_0 e^{kt}$ where M_0 and k need to be stated to 4 significant figures).

-0.02773k

7. (7 marks)

A particle moves along a straight line such that its displacement, x metres at time t seconds is given by the equation $x = 3\sin(2t) + 4$. Determine:

(a) An equation for the velocity of the particle at time t.

[1]

(b) The distance from the origin the particle comes to a stop for the first time.

[2]

$$v=0$$

$$x = 3 \sin \frac{\pi}{2} + 4$$

$$6 \cos 2t = 0$$

$$t = \frac{\pi}{4}$$

(c) The distance travelled in the first three seconds.

[2]

$$\int_0^3 \left| 6\cos 2t \right| dt = 11.16$$

(d) The acceleration when $t = \frac{3\pi}{4}$ seconds.

[2]

$$a = -12 \sin 2t$$

= -12 sin $3\frac{\pi}{2}$
= 12

Given that $r = \sqrt{t}$

$$t = 4x$$
 and $x = \cos \theta$,

Prove that
$$\frac{dr}{d\theta} = -\frac{\sin\theta}{\sqrt{\cos\theta}}$$

$$\frac{dr}{d\theta} = \frac{dr}{dt} \times \frac{dt}{da} \times \frac{da}{d\theta}$$

$$= \frac{1}{2}t^{-\frac{1}{2}} \times 4 \times (-\sin\theta)$$

$$= -2\sin\theta$$

$$= -2\sin\theta$$

$$= -2\sin\theta$$

$$\int \cos\theta$$

9. (6 marks)

Element J has a quantity of radioactive material present that has the following relationship $\frac{dA}{dt} = -0.03A$ where A is the amount (in grams) of the element remaining after t days. There is 200 g present initially.

Give an expression for the amount of radioactive material remaining at t days. (a)

How much of the original element is remaining after 2 weeks? (b)

original element is remaining after 2 weeks? [2]
$$A = 200e$$

$$= 131.4$$

Determine when 150 g of material has decayed. (c)

$$A = 50$$
 $-0.03t$
 $50 = 200e$
 $t = 46.21$
 $50 = 40.21$

[2]